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Abstract 

In this  paper, we  consider linear stabilization of plane, Poiseuille flow using  lin- 
ear  quadratic Gaussian optimal control theory. It is  shown that we may significantly 
increase the dissipation rate of perturbation energy,  while  reducing the required  con- 
trol energy, as compared to  that reported  using  simple, integral compensator control 
schemes.  Poiseuille  flow  is  described  by the infinite-dimensional  Navier-Stokes  equa- 
tions. Since it is  impossible to implement  infinite-dimensional controllers, we imple- 
ment high, but finite-order  controllers. We  show that this procedure  can  in theory lead 
to  destabilization of unmodeled  dynamics. We then show that this may  be  avoided 
using distributed control or, dually, distributed sensing. A problem  in  high plant or- 
der linear quadratic Gaussian  controller  design  is  numerical instability in the synthesis 
equations. We show a linear quadratic Gaussian  design that uses an extremely  low- 
order  plant model. This low-order  controller  produces  results  essentially  equivalent to 
the high-order  controller. 

% c w - /  
i H + d b  &~aA.od S P I J ~ ~ J  

‘MS198-326, J P L ,  4800 Oak  Grove  Drive,  Pasadena, CA 91109.  Member AIAA. 
t38-137  Engineering IV, Department of Mechanical and Aerospace  Engineering,  UCLA, Los Angeles, CA 

t48-121 Engineering IV, Department of Mechanical and Aerospace  Engineering,  UCLA,  Los  Angeles,  CA 
90095.  Fellow AIAA. 

90095.  Associate Fellow AIAA. 

1 



Nomenclature 

2 

A ,  B ,  C ,  D = state  space  representation of system 
E, = control  energy 
H = channel  half-height 
J ( u )  = cost functional 
K ~ ,  liT, = estimator  gain 
L = non-dimensional  channel  length 
P, = solution of controller  Riccati  equation 
P,, P, = covariance of estimator  error 
F(x ,  y ,  t )  = small  perturbation of pressure 
P*( x ,  y ,  t )  = primary  pressure field solution 
Qe,  W e  = power spectral  density  matrices of process and  measurement noises 
R, A = state  and control  weighting matrices 
Re = UcH/v ,  Reynold's  number 
s = complex  frequency 
.^(x,  y ,  t ) ,  .^(x, y ,  t )  = small  perturbation of flow velocity in z and y directions 
U*(y) = primary Poiseuille flow solution for velocity in x direction 
U, = centerline velocity 
V * ( x ,  y,  t )  = primary velocity of  flow in y direction 
u ( t )  = scalar  input  function 
v ( t ) ,  w ( t )  = Gaussian,  white process and  measurement noises 
x ,  y = channel  coordinates in  streamwise  and  wall-normal  directions 
z = streamwise  component of shear 
a = wavenumber 
u = kinematic viscosity 
11, = stream  function 
y = degree of closed-loop stability 
(),, = unmodeled  and modeled  components 
[ a ( x ) ,  b(x)lZ = inner  product of a and b defined as l/LJ!l;, a ( x ) b ( z ) d x  
I .  I = absolute value 
== defined  as A 

1 Introduction 
The basic  concepts of feedback  control of plane, Poiseuille flow were laid  out  in  Joshi et. al. 
[2]. It was shown that  the governing  Navier-Stokes  equations  can  be  converted to control- 
theoretic  transfer  function  and  state  space models using a  numerical  discretization  method. 
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Using the  transfer  function models, it was shown that plane  Poiseuille flow (channel flow) 
can be stabilized using a simple,  constant  gain  feedback,  integral  compensator  controller. 
By  choosing proper sensor  locations,  Joshi, et. al. [a] were able to achieve a stable, closed- 
loop system that was extremely  robust  to changing  Reynolds numbers.  The  subject of this 
paper is the description of an  optimal  controller by moving away from  classical transfer 
function  control design to  state space  methods.  In  the  transfer  function design  used thus 
far,  the  system was stabilized,  but  the  stable  system  still had closed-loop eigenvalues very 
near  the  imaginary  s-axis.  This  resulted in slow dissipation of perturbation energy. The 
present design  provides an  optimal,  stabilizing  controller  that achieves a significantly faster 
dissipation rate of perturbation energy, while reducing  required  control  energy. 

Unlike the  simple  integral feedback  control of Joshi,  et.  al. [2], optimal  controllers  are 
complicated  systems  in  themselves [l]. This  adds considerably to  the complexity of the 
overall  closed-loop system.  In  fact,  many beneficial qualities  have  been  proven  only when 
the controller is of the  same dimension as that of the  plant.  In  the flow case, this  brings a 
special  problem  since the  plant is of infinite  dimension.  Theoretically,  the  controller  must 
also be of infinite  dimension.  This is impractical for many reasons. First, it is  impossible 
to physically implement  an  infinite-dimensional  controller. Secondly, the use of even  very 
high-order  finite-dimensional  plants for controller design leads to  numerical  problems  in  the 
optimal  control  synthesis  equations. We will design an  optimal  controller using a finite-order 
model of the infinite-dimensional  plant. However, applying  reduced  order  controllers to full 
order  plants  has  the risk of making  unmodeled,  stable  parts of the  plant  unstable.  Therefore, 
controllers  must  be designed to ensure  this  does  not  happen. 

This  paper is organized  as follows. In section 2, the  linear  channel flow problem,  state- 
variable  control  models,  and  the  single-wavenumber flow model are reviewed. This  section 
is essentially a review of that contained in Joshi,  et.  al. [a] .  In sections 3 and 4, a LQG con- 
troller  design is introduced  and ways in which closed-loop eigenvalues can  be  made  stable  to 
a prescribed  degree  are shown.  Section 5 explains how the unavoidable unmodeled  dynamics 
of any  reduced  order  model of an  infinite-dimensional  plant  can  lead to closed-loop insta- 
bility  in LQG design. Distributed  actuation  and  distributed sensing are shown to be  dual 
solutions to  the  stability  problem. Section 6 demonstrates  the  performance of high-order 
optimal  controllers.  Finally, section 7 presents  an  extremely low-order controller  design that 
achieves comparable  performance to  the high-order optimal controller  design. 

2 The Linear Channel  Flow  Control  Problem 

2.1 Dynamic  Equations 
We consider the  same  plant as in Joshi,  et. al. [2], i.e. two-dimensional,  plane,  Poiseuille 
flow between  two  parallel, stationary  plates. Let the channel be of finite  length and finite 



height,  with  the  centerline  at zero. The flow in the channel is described by the Navier-Stokes 
equations. Poiseuille flow  is an  exact  solution  to the non-linear,  incompressible  Navier- 
Stokes  equations given flow driven by an  externally  imposed  pressure  gradient  through two 
stationary walls. It is given as U * ( x ,  y , t )  = U*(y) = 1 - y2,  V*(z, y,  t )  = 0, and P*(z ,  y , t )  = 
-2x /Re .  Given the  primary Poiseuille flow, consider  small perturbations  in  the velocities 
of G(x ,  y , t )  in  the  horizontal  direction, .^(x, y , t )  in the vertical  direction,  and p ( x ,  y ,  t )  in 
the  pressure field. The linearized,  incompressible  Navier-Stokes equations  may  be  formed 
by substituting  the  primary flow and  small  perturbations  into  the  non-linear,  incompressible 
Navier-Stokes  equations  and  disregarding the second-order terms involving the perturbations, 

where the flow variables are non-dimensionalized by the channel  half-height,H,  and  centerline 
velocity, U,. By introducing a “stream  function”, $ ( x ,  y,  t )  , where 

and 

(1- 3 )  may  be  combined  into a single equation, 

Assume  periodic  boundary  conditions  in  the  streamwise (z) direction. For channel flow, with 
rigid plates at y = -1 and y = 1, the no-slip boundary  conditions  become, 

a$ - ( x , y  = -1, t )  = 0 
dY 

87b - ( x ,  y = 1, t )  = 0 
dY 



With  an  initial  condition, 
$ ( x , y , t  = 0) = 9 h Y )  

the  boundary value  problem is completely  formed.  Equations  (6-11)  represent the  starting 
point for construction of a feedback  control system.  These  equations  neither  include  any 
control  terms nor do  they  describe any  sensing of flow field variables. 

2.2 Boundary Input 
We consider the case of blowing/suction at the lower wall of the channel. The  boundary 
conditions  are now modified  from  before to include  boundary  input,  represented as the known 
separable  function q ( t ) Z ( x ) f ( y ) ,  

$ ( x ,  y = 1, t )  = 0 

Note  that  these  conditions  constrain  the  function f ( y )  such that f ( y  = -1) # 0, dy  

f ( y  = 1) = 0, and = 0. Many  functions may be  appropriate.  One  such  function is 

d.f(y=-1) - 0 
1 

In order to  relate  boundary  conditions on $ to blowing/suction  in the wall-normal  direction, 
we use ( 5 )  to  relate 6 ( x ,  y,  t )  and $ ( x ,  y,  t ) .  Then (12) becomes 

Note  that G(z ,y , t )  is related  to  the derivative of l ( x ) .  
The homogeneous equation (6) and  the inhomogeneous boundary  condition (12) can 

be  converted  into  an inhomogeneous equation with homogeneous boundary  conditions by 
introducing 

$ ( x ,  y ,  t> = $ ( x ,  Y ,  t> - d t ) f ( Y ) W  
A (1s) 

Then by substituting (1s) into (6), we obtain 

-3 a24 d a24 a34 d a24 d2U(y) 84 1 8'4 1 d2 d 2 4  1 
" 

at 3x2 '-7 at dy = - u ( y ) ~ - u ( y ) ~ a l / l S ' l y " ~  Re dx4 Re 8x2 dy2 Re Dy- 
+--+2---+-" 
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The  boundary  conditions in terms of q!I are now $(y = -1) = 0, = 0, q!I(y = 1) = 0, 
and = 0. The first  line of (19) is the original  dynamical  equation, (6), and  the  next 
two  lines are  all known input  terms. 

2.3 Boundary Output 
we use the  streamwise  component of shear at a single boundary  point, Z ( G , Y  = -1J), 

as our  boundary  output, which is given by z (x; ,  y = -1,t) = . By  expressing 

C ( X ; ,  y = -1,t) in  terms of the  stream  function (4), .z(x;, y = -1,t) = a2"''Y="1't) and by 
observing  (18) 

aqz;,y"l,t) 
aY 

aY2 

2.4 State-Space Formulation 
As described  in  Joshi, et. al. [a], the  linear  partial-differential flow equation  (19) can be 
converted to a set of linear  ordinary-differential  equations by use of a Galerkin  method. 
Approximate  the  solution of (19) as 

and  then  use  appropriate  inner  products  to  obtain a first-order  system of equations [4]. In 
(2l) ,  I?,( y )  are  formed  from Chebyshev  polynomials [4] and 

P,(x) = e ;nolox 
a0 = 2x/L,  -L/2 5 x 5 L/2  (22) 

where the value (nao) is called the  wavenumber, a,  of the  system, while a0 is called the 
fundamental  wavenumber. Note that only integral  multiples of the  fundamental  wavenumber 
are  represented  in the solution  (21).  This  comes  about  since  periodic  boundary  conditions 
in the x direction  can  only  be satisfied by integral  numbers of the  fundamental  wavenumber. 

The resulting  ordinary  differential  equations  are  then  expressed in state-space form by 
defining  the  state as a a vector of coefficients, anm( t )  from (21).  The  result is the  standard 
state  space  representation, 

dz( t )  
nt 
" - A x @ )  + Bu( t )  (23) 
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Z ( t )  = CX(t)  + Dzt(t)  

In  our case, D = 0. 

2.5 Single  Wavenumber  Model 
We consider the periodic  channel  model shown in  figure 1 with boundary  blowing/suction  and 
boundary  shear  measurement.  The Reynolds number considered is R e  = 10,000.  The  total 
length of the  channel is L = 4n  leading to  fundamental wavenumber, a0 = 0.5. Recall,  only 
integral  multiples of this  fundamental wavenumber may exist in the periodic  channel. For 
the single  wavenumber  model,  only  one  wavenumber is included in  the  model,  corresponding 
to Q = nao = 1.00. This wavenumber is selected  since it is the only  wavenumber that 
leads to  unstable  modes for this  channel  geometry [4]. Input is distributed  along  the  entire 
bottom  plate  with a sinusoidal  weighting  function, Z(x) = s in (x ) .  This  type of distributed 
input  has  very  favorable  properties. It will be shown in  section  5 that a distributed  input 
of this  type  leads  to a system  in which  all  modes are uncontrollable except  those  associated 
with the wavenumber of Z(z). In  this case, the wavenumber of, Z(x) = sin(l.Oz), is a = 1.0. 
Therefore, all modes  resulting  from all wavenumbers other  than 1.0 are  uncontrollable.  This 
will allow us to consider  only  those poles and zeros associated  with Q = 1.0 since the control 
will affect these  modes only. Note  that  the physical  blowing/suction is described by the 
equation .^(x,y,t)  = - q ( t ) q f ( y  = -1) = - q ( t ) c o s ( x ) f ( y  = -1), (17).  The f ( y )  function 
in the  input is chosen  as in  (16).  In  order to visualize the control theoretic  model,  the A, B ,  
and C matrices of the  state space  model  are  transformed  to  transfer  function  form.  Figure 
2 shows the locations of the poles and zeros in the s plane  for  the  channel flow system of 
figure 1. The  numerical verification of these poles and zeros was described  in  Joshi, et. al. 
P I  

3 Linear  Quadratic  Optimal  Control Design with Pre- 
scribed  Degree of Stability 

In order to achieve a prescribed  degree of stability [5] with  an optimal  controller, consider 
the  exponential cost functional 

(25) 

where the  matrix R is semi-positive-definite, A is positive-definite and defined a-priori  and 
y is a positive  scalar. We may show [5] that we may  convert  this  problem into a quadratic 
form and solve for a controller  that prescribes  all eigenvalues of the closed-loop system  to  be 
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to  the left of s = -7.  Rewrite  the cost functional as 

J ( u )  = T-+m lim 1 T lT[Re7"r(t), eY tx ( t ) ]  + [AeYtu( t ) ,   eY tu( t ) ]d t  

Define x ( t )  = e Y t x ( t )  and u ( t )  = e%(t ) .  Then -a -a 

Note dm d d x ( t )  
d t  d t  d t  
" - - ( eY t z ( t ) )  = y e Y t z ( t )  + eYt- 

By substituting for dt , dl(t) 

Let A = A + l y .  Then  the  optimal  control is given by Uopt(t) = -A- 'B*FZ( t )  and - A  

where F is obtained by solving the  Riccati  equation 

P A + Z P - F B A - ~ B * P + R = O  

The new closed-loop system  dynamics  matrix becomes 

A - BA-'B*P 

whose eigenvalues are  all  to  the left of s = -7. It can be shown [4] that if ( A ,  B )  is 
controllable  and (A ,  R)  is observable, then ( A  + 71, B )  is controllable  and  there  exists a 
positive  definite  solution, P,  of the  matrix  Riccati  equation (31) for R 2 0 . 

In  theory, for full-order  plant  models,  there is no  restriction on the value of y. In  practice, 
however, for controllers  built using reduced-order  plant  models, y is limited  by  robustness 
of the controller  when  applied  to  the  full-order  system. 

4 Optimal  Estimator Design with Prescribed  Degree 
of Stability 

In the  previous  section, we derived an  optimal  controller. As can  be seen from equation 
(30), the  control is always  represented in terms of the  current  state, x ( t ) .  These  states, 
however, are  not available to us in the  channel  problem.  Instead, we have  access to  shear 



measurements  at only one or several  locations along the  boundary.  Therefore, we must 
construct  an observer to  estimate  the  state, s( t ) ,  from the  measured  shear  outputs, ~ ( t ) .  In 
order  to see how this is done, consider a noisy version of the  state  space  model shown  earlier 

" - A z ( t )  + B u ( t )  + v ( t )  
dt (33) 

Z ( t )  = CZ( t )  + w ( t )  (34) 

x0 = x ( t  = 0 )  (35) A 

where ( A ,  B )  is again  assumed  controllable and ( A ,  C) is again assumed observable. 

Assumption 1 The noise processes v ( t )  and w ( t )  are white, Gaussian, of zero mean,  in- 
dependent of each other, and  have known  covariances, The  matrices Po, Qe,  and We are 
positive-definite. 

E [ v ( ~ ) v * ( T ) ]  = & e S ( t  - T )  E [ v ( t ) ]  =z 0 (36) 

E[w(t )w*(7)]  = weqt - T )  E[w( t ) ]  = 0 (37) 

E[z(to)l  = 772 (38) 

E ( [ z ( t o )  - m][x(to> - 7721.) = Po (39) 

where E ( . )  is an  expectation  operator. 

It may  be  shown  that a steady  state  estimator  may  be  constructed  that minimizes the  error 
covariance  between the  actual  state, z ( t ) ,  and  the  estimated  state, .^(Zt) ,  where Zt = {z(Z) : 
"00 < I 5 t } ,  i.e. the  measurement history, 

$Z) E ( [ x ( t )  - Z ( Z t ) ] [ z ( t )  - Z(Zt>]*) 

It can be  shown that  the  optimal  estimate,  in  the sense of (40), is given by the conditional 
expectation Z ( t )  = Z(Zt)  = E ( s ( t ) / Z t ) ,  where E ( . /Z t )  is the  conditional  mean  operator. In 
the  linear case with Gaussian  noises, the  structure of the  estimator is 

A 

where 
K e  = -pec*we-1 

and Pe is calculated  from a matrix  Riccati  equation 

PeA" + APe - PeC*We"CPe + Qe = 0 
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Note that  the  stability of (41)  depends on the  stability of (A-P,C*W;'C). The  assumptions 
that We, Qe > 0 and ( A ,  C )  observable  assure 3Pe > 0 such that  (43) is satisfied. 

By  considering a slightly different estimator  Riccati  equation, we may  constrain  the 
closed-loop estimator poles to  be  stable  to a prescribed degree. It  can  be shown [4] that 
if ( A ,  C )  is observable,  then ( A  + y l ,  C )  is observable and  there  exists a positive  definite 
solution of the  matrix Riccati  equation 

- 
Pe(A+yl )*+(A+yl)P, -P ,C*W,- 'CP,+&e=O (44) 

for Qe > 0, where y is a real,  positive  scalar.  Then  all eigenvalues of ( A  - EC*W;lC) are 
all to  the left of s = -7. The new estimator  gain is given as 

- 
I(, = -p,c*we-* (45) 

4.1 Separation  Principle  in LQG Control 
The goal of linear  quadratic Gaussian (LQG) design is to combine the  results of deterministic 
linear  quadratic  control  theory  and  stochastic  estimation  theory  to form an overall  control 
system. As we have  seen,  our  system  equations become  stochastic  with the  addition of noise 
terms.  Therefore,  in  our controller  design, we may no longer minimize a deterministic cost 
functional.  Rather, we  now minimize  the  expected value of the cost functional, 

where x ( t )  is now a stochastic process. It can  be shown that  the  optimal control is  now 
expressed  in  terms of the  estimated  state, uopt(t)  = -A-'B"PZ(t). The  complete LQG 
solution is then 

" d z ( t )  - A x ( t )  + B u ( t )  + v ( t )  plant 
dt (47) 

Z(t) = C x ( t )  + w( t )  observation (48) 

x0 = x ( t  = 0) A initial  condition (49) 

= A?(t) + B u ( t )  + Ir.,(C?(t) - Z(t))  estimator (50) 

uOpt(t)  = -A-'B"F?(t) feedback (51) 

d?( t )  
dt 

where P is the positive-definite  solution of (31) and is given in (4.5). 
We may show that  the overall estimator/controller  system is stable by stacking  the  state, 

x ( t ) ,  and  the  error, e ( t )  = .i: - x ,  into  one vector  and studying  the  dynamics of the new 
system. 

A 



The  stability of the  system is determined by the eigenvalues of the  dynamical  matrix. Clearly, 
the eigenvalues are  comprised of the eigenvalues of the closed-loop controller, (A-BA-'B*F) 
and  the eigenvalues of the closed-loop estimator, ( A  - EC*WFIC). We have already proven 
that  both of these  matrices  are  stable  (under  appropriate  assumptions).  Therefore,  the 
overall  control system is stable also. This is known as the  separation  principle in LQG 
control. 

5 Effects of Unmodeled Wavenumber Dynamics on the 
LQG Problem 

We have already  seen  that  the  separation  principle  in LQG control allows us to show that if 
the controller  and  estimator  are  both  stable,  then  the overall system is stable. We will see 
in  this  section that this  principle  breaks down in  the presence of unmodeled  dynamics. 

Any finite-dimensional  model is a reduced-order  model for the  infinite-dimensional  chan- 
nel flow problem.  In  terms of poles and zeros studied  earlier,  more poles and zeros  exist in 
the  system  than  are  accounted for in the  model  and  the  subsequent  controller design. It is 
easy to  imagine  that  an  unmodeled pole could be drawn to  the  unstable half of the s plane 
by a reduced-order  controller. As a result, even though  the designed  controller  may  stabilize 
the reduced-order  plant,  it  may  not  stabilize  the  actual  infinite-dimensional 
the following partition of the  state space  model  with noise terms  added 

2 = [ c,  c, ] 2 + w ( t )  

plant. Consider 

(54) 
where the  subscripts m and u represent  the  modeled  and unmodeled parts of the  system. The 
process  noise, v , and  the  measurement noise,w, are  assumed  to  be  Gaussian,  independent, 
zero  mean,  white noise processes as  in (36 )  and (37). The unmodeled  part is meant  to 
denote  only  the  dynamics of wavenumbers  left out of the  reduced-order  model,  represented 
by (1.1 > N )  in (21). A,, is assumed  stable.  Both A, and A, are of infinite  dimension 
[ a ] ;  A,, because of the infinite  number of wavenumbers left out of the reduced-order  model 
and A, because of the infinite  number of poles for each of the  finite  number of modeled 
wavenumbers,  represented by ( r n  > M )  in (21). 

Since we only know the modeled part of the  system, we design an LQG  controller/observer 
based  on that  part. Minimize  the  expected value of a cost functional, J ,  

T 
E ( J )  = E ( lim f l  [Rx,(t),z,,(t)] + [Au( t ) ,  u ( t ) ] c Z t  

T+M 
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where R is any  semi-positive  definite  matrix  and A is any  positive  definite  matrix. The 
optimal  control is of the form 

where Z m ( t )  is the  estimate of the modeled state  and  the  matrix,P , is calculated by solving 
the algebraic  Riccati  equation 

ALF + FAm - FB,R-lB;P+ R = 0 (57) 

assuming  the  same  assumptions as in  (47)-(51) for the modeled parts. 

observer  as  described  in  section  4 
Since we cannot  obtain  direct  measurements of the  current  state, x m ( t ) ,  we construct  an 

where the  estimator  gain I(, = -PeC&Wel requires the  solution of another  matrix  Riccati 
- 

equation - 
P,Af + A m E  - ECA We"CmE + Qe = 0 (59) 

Define the error  between  the  estimated, modeled state, &(t) ,  and  the  actual  state, xm(t) ,  
as em(t). Then  as  in [6] 

~ dem(t) - A d i m ( f )  dxm(t) 
dt  dt  dt 

- - - 

where the unmodeled state  acts  as a forcing term. 
In  order  to  study the entire  controller/observer  system,  stack the modeled state,  the 

modeled  error,  and  the  unmodeled  state  and consider the  dynamics of the  stacked  system 
(61)- 

1 1 
From the LQG theory  presented  in  section 3, ( A ,  - B,A-lB;P) and ( A ,  - PeC&W;lCm) 
are  stable. However, from (61)) the overall system  may  not  be  stable  due to  the  unmodeled 

- 
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actuator influence , B,,, and sensor influence , C,, matrices.  Therefore, we have  seen that 
in the LQG framework, we cannot  insure overall stability unless the unmodeled  parts of the 
system  are  accounted  for. 

There  are two ways to  ensure  system (61) is stable,  assuming (A ,  + B,KC,) and A, 
are  stable.  One way is to ensure B, = 0, i.e.,  make  sure  the  unmodeled  dynamics  are 
uncontrollable  with  respect  to  the  actuator. The  other way to  ensure a stable  system is 
to  assure C, = 0, i.e.,  make  sure the unmodeled  dynamics  are  unobservable with respect 
to  the sensor.  Controllability  and  observability  for the plane  Poiseuille flow problem were 
introduced  in  Joshi, et. al. [2]. We  now explore how we may achieve these  conditions. 

5.1 Point Actuation vs. Distributed Actuation 
One way to  guarantee  the overall system (61) is stable is to assure  all  modes  associated  with 
unmodeled  wavenumbers  are  uncontrollable  with  respect to  the  input by making B, = 0. In 
the fully  developed  channel flow system,  this would account for the  wavenumbers left out of 
the reduced-order  model. If 

Z(z) = A Real ( fi: einooz) (62) 

where the n range  corresponds to  the modeled  wavenumbers  only, then  the  projection of 
Z(z) onto  unmodeled wavenumbers is zero due  to  the  orthogonality of Fourier  components. 
As a result, B, = 0 and  stability of unmodeled  dynamics is retained.  Note  that since 
Z(J:) # 0 for all  but a finite  number of points  in  the J: direction,  this  type of scheme is a 
distributed  actuation  scheme.  Therefore, by moving  from a physically  easier to  implement 
“point”  actuator  to a more difficult distributed  actuator, we have retained  stability of the 
unmodeled  dynamics. Physically, a distributed  actuator is obtained by a large  number of 
independently  programmable  actuators placed along the lower wall. If distributed  actuation 
is infeasible or  undesirable, we must look to  the  dual  problem of sensing to gain  stability. 

n=-N 

5.2 Point Sensing vs. Distributed Sensing 
It is seen  from (61), that if B, # 0, stability may  still be maintained if C, = 0. This 
corresponds to making all  unmodeled  wavenumber  dynamics  unobservable  with  respect to 
the  shear sensor.  Placing a single shear sensor at a point  along the lower channel wall results 
in a measurement  that includes the effects of all wavenumbers,  both  modeled  and  unmodeled. 
Clearly, C, # 0, and  stability is not  guaranteed. This corresponds to  the  point forcing  case  in 
the  dual  problem of actuation. By using a distributed sensing  scheme, however, we may  form 
a new measurement  that includes  only the effects of the modeled  wavenumbers.  This is done 
by projecting a distributed  shear  function, ~ ( x ,  y = -1, t ) ,  onto  the  modeled  wavenumbers. 
The  distributed  shear  function, z ( z ,  y = -1, t )  is physically created by measuring  the  shear 



at all  points  along  the lower channel wall. Then a new projected  shear  measurement,  denoted 
.2(t), is defined as 

n=-N 

where  again  the n range corresponds to modeled  wavenumbers only. Note that  just as in the 
actuator  case, we have  implemented a more physically  complicated  series of sensors in  order 
to achieve  overall stability. 

There  is a subtle difference between making  the  channel  system  unmodeled  dynamics 
unobservable  as  opposed to uncontrollable.  By  making  unmodeled  dynamics  uncontrollable, 
linear  stability  is  maintained  (under  appropriate  conditions) since the unmodeled  dynamics 
cannot  be affected by the  input. By making  unmodeled  dynamics  unobservable? however, 
linear  stability is also maintained  (under  appropriate  conditions)?  but  unmodeled  dynamics 
may  be affected by the  input.  These affected dynamics could produce  transients  that  cause 
the linear  model to become invalid [a] .  

In  terms of modeling, we need not  include  either  unobservable  or  uncontrollable  modes 
in our  plant  models.  Therefore,  distributed  actuation or  sensing allows models to  be  created 
using  only a finite  number of wavenumbers.  Note, however, that even a single  wavenumber 
model  contains  an  infinite  number of modes shown by the infinite number of poles extending 
out  into  the left hand s plane as shown in  figure 2 (see also [4]). 

6 Control Design 
As we have  seen  in  section 5 ,  

Using Finite Large 
we may  reduce  the  problem of 

Order Models 
including  an  infinite  num- 

ber of wavenumbers  in a reduced-order  model to a problem of including a finite  number of 
wavenumbers by using distributed  actuation or  sensing. However, even with a model con- 
taining only a finite  number of wavenumbers,  the  problem is still  infinite-dimensional  because 
of the infinite  number of poles extending  into  the left hand s plane for each wavenumber. 
Furthermore, we do not know the  exact  position of poles far  into  the left hand s plane  due 
to  the finite  number of basis functions used in the y direction [4]. Still,  these poles must 
be  accounted for in the control  design. The fact that  uncertain poles appear  only  at  higher 
frequencies  in the  bandwidth will be  advantageous.  It will allow a robust  controller to be 
designed that “rolls off” at high frequencies. 

For disturbance  rejection,  it can  be shown [5]  that high loop gain is preferable.  On  the 
other  hand, for good output noise suppression,  the loop gain  should  be low at all frequencies 
in which the noise enters [ 5 ] .  It is generally  assumed that noise is most  destructive  at higher 
frequencies. As a result, control design focuses on high loop gain at low frequencies  where 
disturbance  rejection is most important  and low loop gain at high frequencies  where noise 
is more of a problem.  Therefore,  an  ideal  controller will cause  loop  gain to roll-off at high 
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frequencies. 
In addition  to noise at high frequencies, the  other  major  problem  at high  frequencies is 

unmodeled  dynamics. We have  already  pointed  out that  there  are  two  types of unmodeled 
dynamics  in  the  channel flow problem.  The first type is unmodeled dynamics of unmodeled 
wavenumbers. We accounted for these  dynamics  through  distributed  control  or  distributed 
sensing. The second type is unmodeled  dynamics at high  frequencies for modeled  wavenum- 
bers.  This  type of unmodeled  dynamics  has yet to be considered and is common  to  most 
infinite  dimensional  systems. To account for these  dynamics,  controllers  are designed that 
give low loop  gain at the high  frequencies of the open-loop controller/plant series  where 
unmodeled  dynamics  exist  in  order  not to  stimulate  modes  at  those  frequencies. Roll-off 
has also been  given a more  analytic framework by considering multiplicative,  unstructured 
uncertainty [7].  

We consider the  one wavenumber  model shown in figure 1 with Re = 10,000.  Only 
CY = 1.0 is included  in the model. All other wavenumbers are  uncontrollable  due to  the 
distributed  input of l(z) = s in(z )  as shown in  section 5.1. A single  point  sensor is located 
at rr. The  length of the channel is 4n leading to a fundamental  wavenumber of CYO = 5. 

We  now design an LQG controller and  compare closed-loop response to  that of the  simple, 
integral  controller  introduced  in [2]. The  integral  control  method is shown in figure 3 and 
the LQG control  method is shown in figure 4. Two  criterion will be used in  comparing 
controllers: (1) output  (shear)  settling  time  and (2) required  control  energy.  Control  energy 
will be defined as, 

E, e {F (64) 

1 

where T is a finite  upper  bound. 
We consider  two  models  in  evaluating the  resulting LQG controller:  one  model of order 

252 (Validation  Model)  and  the  other  model of order 140  (Reduced-order  Model).  Validation 
Model is constructed by including all poles and zeros to  the right of s = -4 (refer to figure 
2). Reduced-order  Model  includes  all observable and controllable poles and zeros to  the right 
of s = -2 (refer to figure 2). Reduced-order  Model was created by using  the minreal function 
within  the MATLAB Control Toolbox [8] with the  parameter value tol= l e  - 3. Table 1 lists 
all  models  considered  in  this  study.  The l q r  and  lqe2 functions of the MATLAB Control 
Toolbox were used to  create  an LQG controller  using  Reduced-order  Model. The A matrix 
supplied to each of these MATLAB functions were modified to ( A  + I y )  in order  to achieve 
a prescribed  degree of stability  as  described in  sections 3 and 4 . The following parameters 
were used: y = .005, R = .OOlC*C, A = I ,  Qe = 10BB' , W e  = 1. The R matrix was 
chosen to  minimize  shear in the cost functional (46); the Qe matrix was originally chosen to 
recover robustness  properties using loop transfer recovery techniques [9]; y was chosen by 
trial  and  error  to  decrease  settling  time  without  increasing control  energy; We, and A were 
chosen using trial  and  error.  The gain of the  integral controller was chosen as, K T  = .07. 
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Figures 5 and 6 show the  shear  output  and blowing/suction input signal  for the closed- 
loop system  (Validation  Model  plus  controller) for the  same  plant  initial  condition (ones ( 2 5 2 , i )  
i n  Matlab). Clearly,  using the LQG controller,  the  channel  system  has a much  shorter  set- 
tling  time. More significantly, this  reduced  settling  time is accompanied by lower control 
energy. Indeed, for the LQG case, ELQG = .5809, while for the  integral  controller  case, 
EINT = .8178. Note that since  all values are  non-dimensional, it is the  comparison of en- 
ergies that is important,  not  the  actual  numbers.  Similar  results were obtained for other 
initial  conditions,  as well as disturbance  inputs. 

In  analyzing the  resulting  control  system, consider  figure 4. The  optimal  control is defined 
at Ii' = 1 with a properly  designed LQG controller.  Note  many  poles  in  Validation  Model 
are  either  uncontrollable or unobservable  as shown by pole/zero  cancellations  (figure  2). 
These poles cannot  be  moved. We concentrate on moving  only the observable/controllable 
poles. Figure 7 shows the root  locus of the  controller/estimator, designed  using  Reduced- 
order Model (order  140), in  series  with  Validation  Model  (order 252), for gain  values, I - ,  
varying  from 0 to 4. Poles of the closed-loop system achieve the goal of being to  the right of 
s = -.005 with  gain, I( = 1. Consequently, settling  time is reduced.  Finally,  figure 8 shows 
the  magnitude response for the open-loop  series  connection of the LQG controller  (using 
Reduced-order  Model)  and  Validation Model. Note that the loop  gain rolls-off at higher 
frequencies. 

7 Control Design Using Low Order Models 
Although we achieved our goal in  section 6, we designed our LQG controller  with a high 
dimensional  plant  model  (order  140).  This  may  lead to numerical  problems if the design were 
attempted  with a new model that contained  several  wavenumbers  as the  model would be 
even  larger. As a result, we would like to develop a design that uses an  extremely low-order 
model.  Consider the  model shown in figure 9 (Low-order  Model). This  model  contains 8 
poles and 7 zeros. 

A LQG controller is designed  using only Low-order Model. The  parameters for the design 
are  the  same  as in  section 6. Figure 10 shows the closed-loop output response of Validation 
Model (order 252) and  controller  obtained  from Low-order Model (figure 9). An  almost 
identical  settling  time is achieved  compared to  the controller  using  Reduced-order  Model 
(order 140). Also, the control  energy is only slightly  increased to Elow-oTdeT = .6131. Using 
this  design, we have  reduced  the  order of the LQG controller  from 140 to 8, while maintaining 
performance. 
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8 Conclusion 

Linear stabilization of plane, Poiseuille flow using linear  quadratic  Gaussian  optimal con- 
trol  theory  has been  examined.  The infinite-dimensional nature of the problem poses chal- 
lenges for finite-dimensional  control.  Distributed  actuation  and/or  sensing  methods, as well 
as  loop  gain roll-off, can  be  used to address the  inherent  unmodeled  dynamics of finite- 
dimensional  models of infinite-dimensional  systems. Using linear  quadratic  Gaussian  meth- 
ods, we achieved  significantly  higher  dissipation rates, while using lower control  energy, than 
those  reported  in  integral  compensator control  schemes. We showed linear  quadratic Gaus- 
sian  designs that used both  a high-order and  an  extremely low-order plant  model  for  control 
synthesis. The low-order controller  produced  results  essentially  equivalent to  the high-order 
controller.  In  this  paper, we have  examined  linear  quadratic  Gaussian  control  methods. 
Other  control  approaches exist that  are based on worst-case design [lo]. The  methods dis- 
cussed in  this  paper were aimed  at reducing settling  time  and  control energy. However, 
additional  criterion such  as  limiting transient growth will be  important in  preserving the 
integrity of a linear  model of channel flow and  preventing  transition of laminar  channel flow 
to  turbulent  channel flow. 
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I Model Name Order 1 

L z z s F i  Validation 

19 

I Low-order 8 "1 
Table 1: Models used in LQG controller  design. 
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Re=l 0,000 
a= 1 .oo 

4- L=4n -”-------) 

.t ”.” 

X 

-2X t t 0 2R 

-dw(x)/dx=-cos(x) shear sensor at X=+X 

Figure 1: System model for Poiseuille  channel flow. 
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Figure 2: Pole (x) /Zero ( 0 )  Configuration,  Channel model: Re = 10,000, shear sensor at 
7r, Z(2) = sin(z),L=4?T7 a = 1.0. 
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X’ = Ax+Bu - - 
y = CX+DU H i n t s h e a r ]  

Gain,K-I Integrator S h e a r  
Channe l   Sys t em 

0 4 inttime 1 
Clock  Time 

Figure 3: Integral control block diagram. 
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- - x’=Ax+Bu 
y = CX+DU Iqgshead 

Shear 
Validation  Model 

X’ = Ax+Bu 4 y = CX+DU 

LQG Controller Gain, K 

~----q Iqgtime I 
Clock Time 

Figure 4: LQG control loop for Validation Model plant  and LQG controller. 
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Figure 5:  Shear  at  ouput of closed-loop system. Dashed  line is output  from  integral 
method. Solid  line is output from  reduced-order LQG control method. 
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Figure 6: Blowing and  suction  control  input. Dashed  line is input  from  integral  control 
method. Solid  line is input from  reduced-order LQG control  method. 
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Figure 7: Root locus of optimal controller  synthesized  using  Reduced-order  Model  in  series 
with  Validation  Model  plant for gain$', varying from 0 to 4. 
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Figure 8: Open loop  response magnitude for series  connection of LQG controller  (using 
Reduced-order  Model)  and  Validation Model. 
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Figure 9: Pole (x) /Zero ( 0 )  configuration of Low-order Model. 
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Figure 10: Dashed-dotted  line is output from closed-loop system  using  reduced-order LQG 
controller. Solid  line is output'  from closed-loop system using  low-order LQG controller. 


